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Abstract. The coefficient coalgebra of r-fold tensor space and its dual,
the Schur algebra, are generalized in such a way that the role of the
symmetric group Σr is played by an arbitrary subgroup of Σr. The
dimension of the coefficient coalgebra of a symmetrized tensor space is
computed and the dual of this coalgebra is shown to be isomorphic to
the analog of the Schur algebra.

0. Introduction

Let K be the field of complex numbers. The vector space E = Kn is
naturally viewed as a (left) module for the group algebra KΓ of the general
linear group Γ = GLn(K). The r-fold tensor product E⊗r is in turn a
module for KΓr, where Γr = Γ × · · · × Γ (r factors). Let G be a subgroup
of the symmetric group Σr and let χ : G → K be an irreducible character
of G. The “symmetrized tensor space” associated with χ is Eχ = E⊗rtχ,
where tχ is the central idempotent of the group algebra KG corresponding
to χ (with the action of G on E⊗r being given by place permutation).

In this paper, we study the coefficient coalgebra Aχ of the R-module
Eχ, where R is the subalgebra of KΓr consisting of those elements fixed
by G under the action of Σr on Γr given by entry permutation. (If V is
an R-module with finite K-basis {vj | j ∈ J}, then for each κ ∈ R, we have
κvj =

∑
i αij(κ)vi for some αij : R→ K. The linear span of the functions αij

(i, j ∈ J) has a natural coalgebra structure. It is the “coefficient coalgebra”
of V , denoted cf(V ).)

Section 1 sets up notation and presents some standard results suitably
generalized to the current situation.

In Section 2, we obtain generalizations of some classical results (i.e., re-
sults for the case G = Σr). In particular, we show that the image S of the
representation afforded by the R-module E⊗r equals the set of those endo-
morphisms of E⊗r that commute with the action of G (Theorem 2.7). This
generalizes Schur’s Commutation Theorem [Ma, 2.1.3] in the classical case,
where S is the “Schur algebra.” We also observe that the algebra isomor-
phism S ∼= A∗ (A = cf(E⊗r)) in the classical case [Ma, 2.3.5 and following
paragraph] continues to hold with G arbitrary (Theorem 2.8).
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In Section 3, we study the coefficient coalgebra Aχ and the corresponding
analog Sχ of the Schur algebra and establish an algebra isomorphism Sχ ∼=
A∗χ (Theorem 3.4). We exhibit decompositions of A and S in terms of
the various Aχ and Sχ, respectively (Theorems 3.3 and 3.5), and end by
providing a formula for the dimension of Aχ over K (Theorem 3.6).

Some of the results of this paper appear in the Ph.D. dissertation [Tu] of
the second author written under the direction of the first author. We thank
the referee for some useful suggestions.

1. Notation and background

Let G be a fixed subgroup of the symmetric group Σr.
For the general results of this section and the next, the field K can be

more general than the field of complex numbers. We assume only that K is
an infinite field of characteristic not a divisor of |G|. Fix a positive integer
n. The vector space E = Kn is acted on naturally (from the left) by the
semigroup M = Matn(K) of n× n matrices over K and is therefore a KM -
module, where KM is the semigroup algebra of M over K.

The group G acts from the right on M r = M × · · · ×M (r factors) by
mσ = (mσ(1),mσ(2), . . . ,mσ(r)) (m ∈M r, σ ∈ G).

The semigroup M r acts on E⊗r = E ⊗ · · · ⊗ E (r factors) by mv =
m1v1 ⊗ · · · ⊗mrvr (m ∈M r, v = v1 ⊗ · · · ⊗ vr ∈ E⊗r). This action extends
linearly to make E⊗r a KM r-module.

For each 1 ≤ α ≤ n, let eα ∈ E be the n-tuple with β-entry δαβ (Kronecker
delta). Let I = {i = (i1, . . . , ir) ∈ Zr | 1 ≤ ij ≤ n for all j}. The space E⊗r

has basis {ei | i ∈ I}, where ei := ei1 ⊗ · · · ⊗ eir .
For m ∈M r and i, j ∈ I, define mi,j =

∏r
α=1(mα)iαjα .

1.1 Lemma. Let m ∈M r.

(i) mej =
∑

imi,jei (j ∈ I).
(ii) (mσ)i,j = miσ−1,jσ−1 (σ ∈ G, i, j ∈ I).

Proof. (i) For all j ∈ I, we have

mej = m1ej1 ⊗ · · · ⊗mrejr =

(
n∑

i1=1

(m1)i1j1ei1

)
⊗ · · · ⊗

(
n∑

ir=1

(mr)irjreir

)

=
∑
i∈I

r∏
α=1

(mα)iαjαei1 ⊗ · · · ⊗ eir =
∑
i∈I

mi,jei.

(ii) For all σ ∈ G and i, j ∈ I, we have

(mσ)i,j =
r∏

α=1

(mσ(α))iαjα =
∏
α

(mα)iσ−1(α)jσ−1(α)

=
∏
α

(mα)(iσ−1)α(jσ−1)α

= miσ−1,jσ−1 ,
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Let Γ = GLn(K) ⊆M and put Γr = Γ×· · ·×Γ ⊆M r. The right action of
G on M r induces an action on the group algebra KΓr of Γr over K. Denote
by R the subalgebra of KΓr consisting of those elements fixed by G:

R = (KΓr)G = {κ ∈ KΓr |κσ = κ for all σ ∈ G}.

The set {ḡ | g ∈ Γr} is a K-basis for R, where

ḡ =
1

|G|
∑
σ∈G

gσ.

Let V be an R-module with finite K-basis {vj | j ∈ J}. For κ ∈ R and
j ∈ J , we have

κvj =
∑
i∈J

αij(κ)vi

for some αij ∈ R∗ = HomK(R,K) (dual space of R). The K-linear span of
the set {αij | i, j ∈ J} is the coefficient space of the R-module V , denoted
cf(V ). This space is independent of the choice of basis for V .

IfRK(R) is the representativeK-bialgebra of the multiplicative semigroup
R, then V is a right RK(R)-comodule with structure map ψ : V → V ⊗
RK(R) given by ψ(vj) =

∑
i∈J vi ⊗ αij . We have

4(αij) =
∑
k

αik ⊗ αkj ,

ε(αij) = δij ,

so that cf(V ) is a subcoalgebra of RK(R) [Ab, p. 125].
Let ρ : R → EndK(V ) be the representation afforded by the R-module

V .

1.2 Lemma.

(i) For κ ∈ R, we have κ ∈ ker ρ if and only if f(κ) = 0 for all f ∈
cf(V ).

(ii) For f ∈ R∗, we have f ∈ cf(V ) if and only if f(κ) = 0 for all
κ ∈ ker ρ.

Proof. See proof of [Ma, 2.2.1]. �

1.3 Theorem. The map ψ : im ρ→ cf(V )∗ given by ψ(ρ(κ))(c) = c(κ) is a
K-isomorphism.

Proof. The bilinear map im ρ × cf(V ) → K given by 〈ρ(κ), c〉 = c(κ) is
well defined and nondegenerate by Lemma 1.2. Since the spaces im ρ and
cf(V ) are finite dimensional, the induced map ψ : im ρ → cf(V )∗ is a K-
isomorphism. �
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2. Generalized coefficient coalgebra and Schur algebra

We continue to assume that K is an infinite field of characteristic not a
divisor of |G|. Recall that R is the subalgebra of KΓr consisting of those
elements fixed by G.

For i, j ∈ I define ci,j : R→ K by putting

ci,j(ḡ) =
1

|G|
∑
σ∈G

(gσ)i,j

(g ∈ Γr) and extending linearly to R.

2.1 Lemma. The function ci,j is well-defined.

Proof. Let g, h ∈ Γr and assume that ḡ = h̄. Then h = gτ for some τ ∈ G,
so

ci,j(h̄) =
1

|G|
∑
σ∈G

(hσ)i,j =
1

|G|
∑
σ∈G

(gτσ)i,j = ci,j(ḡ).

�

2.2 Lemma. For κ ∈ R and j ∈ I,

κej =
∑
i∈I

ci,j(κ)ei.

Proof. Let g ∈ Γr. It suffices to establish the equality in the case κ = ḡ. For
j ∈ I we have

ḡej =
1

|G|
∑
σ∈G

(gσ)ej =
1

|G|
∑
σ∈G

∑
i∈I

(gσ)i,jei =
∑
i∈I

ci,j(ḡ)ei,

where the second equality uses Lemma 1.1. �

The group G acts on I from the right by iσ = (iσ(1), iσ(2), . . . , iσ(r)). In
turn, G acts on I × I diagonally: (i, j)σ = (iσ, jσ). For i, j, k, l ∈ I, put
(i, j) ∼ (k, l) if (k, l) = (i, j)σ = (iσ, jσ) for some σ ∈ G.

2.3 Lemma. ci,j = ck,l if and only if (i, j) ∼ (k, l).

Proof. For i, j ∈ I, define ĉi,j : M r → K by

ĉi,j(m) =
1

|G|
∑
σ∈G

(mσ)i,j ,

and note that for g ∈ Γr we have ĉi,j(g) = ci,j(ḡ).
Let i, j, k, l ∈ I and assume that ci,j = ck,l. Then ĉi,j(g) = ĉk,l(g) for each

g ∈ Γr and, since Γr is Zariski dense in M r, it follows that ĉi,j = ĉk,l.
Define bi,j = (bi1j1 , . . . , birjr) ∈M r, where (bab)cd = δ(a,b),(c,d) (Kronecker

delta) and note that (bi,j)x,y = δ(i,j),(x,y). For x, y ∈ I, we get, using Lemma
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1.1,

ĉx,y(bi,j) =
1

|G|
∑
σ∈G

(bi,jσ)x,y

=
1

|G|
∑
σ∈G

(bi,j)xσ−1,yσ−1

=

{ |G(i,j)|
|G| , (x, y) ∼ (i, j)

0, otherwise,

where G(i,j) is the stabilizer of (i, j) in G. Since

ĉk,l(bi,j) = ĉi,j(bi,j) =
|G(i,j)|
|G|

6= 0,

we conclude that (k, l) ∼ (i, j).
Now assume that (i, j) ∼ (k, l) so that (k, l) = (iσ, jσ) for some σ ∈ G.

For any g ∈ Γr, Lemma 1.1 gives

(gσ−1)i,j = giσ,jσ = gk,l,

so

ci,j(ḡ) =
1

|G|
∑
τ∈G

(gτ)i,j =
1

|G|
∑
τ∈G

(gτσ−1)i,j

=
1

|G|
∑
τ∈G

(gτ)k,l = ck,l(ḡ).

Therefore, ci,j = ck,l. �

Let A be the coefficient space of the R-module E⊗r.

2.4 Theorem.

(i) The space A has K-basis {ci,j | (i, j) ∈ B}, where B is a set of rep-
resentatives for the orbits of I × I under the diagonal action of G.

(ii) A is a coalgebra with structure maps

4(ci,j) =
∑
k∈I

ci,k ⊗ ck,j ,

ε(ci,j) = δi,j .

Proof. (i) By Lemma 2.2, the space A is the K-linear span of {ci,j | i, j ∈ I},
which equals {ci,j | (i, j) ∈ B} by Lemma 2.3.

Suppose that
∑

(i,j)∈B αi,jci,j = 0 with αi,j ∈ K. Let ĉi,j : M r →
K be as in the proof of Lemma 2.3. Since ĉi,j(g) = ci,j(ḡ), we have∑

(i,j)∈B αi,j ĉi,j(g) = 0 for all g ∈ Γr. Since Γr is Zariski dense in M r,
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we have
∑

(i,j)∈B αi,j ĉi,j = 0. Let (x, y) ∈ B. With bx,y as in the proof of

Lemma 2.3 we have (using the formula in that proof)

αx,y =
|G|
|G(x,y)|

∑
(i,j)∈B

αi,j ĉi,j(bx,y) = 0.

Therefore, {ci,j | (i, j) ∈ B} is linearly independent.
(ii) This follows from Lemma 2.2 and the discussion in Section 1. �

The group G acts on E⊗r by eiσ = eiσ (i ∈ I) and this action extends
linearly to make E⊗r a right KG-module. In fact E⊗r is a (KM r,KG)-
bimodule. One checks that vσ = vσ(1)⊗· · ·⊗ vσ(r) for all v = v1⊗· · ·⊗ vr ∈
E⊗r.

The set N = EndK(E⊗r) is a right KG-module with action given by
(fσ)(v) = f(vσ−1)σ (σ ∈ G). Moreover, NG = EndKG(E⊗r), where NG is
the set of those elements of N fixed by G.

Let T̂ : KΓr → EndK(E⊗r) be the representation afforded by the KΓr-
module E⊗r.

2.5 Lemma. T̂ is a KG-homomorphism.

Proof. Let g ∈ Γr, σ ∈ G, and v = v1 ⊗ · · · ⊗ vr ∈ E⊗r. We have

[T̂ (g)σ](v) =
(
T̂ (g)(vσ−1)

)
σ

=
(
T̂ (g)(vσ−1(1) ⊗ · · · ⊗ vσ−1(r)

)
σ

=
(
g1vσ−1(1) ⊗ · · · ⊗ grvσ−1(r)

)
σ

= wσ(1) ⊗ · · · ⊗ wσ(r) (wi := givσ−1(i))

= gσ(1)v1 ⊗ · · · ⊗ gσ(r)vr
= [T̂ (gσ)](v).

Therefore, T̂ (gσ) = T̂ (g)σ as claimed. �

The K-space N has basis {ei,j | i, j ∈ I}, where

ei,j(ek) = δjkei

(Kronecker delta).

The map T = T̂ |R : R → EndK(E⊗r) is the representation afforded by
the R-module E⊗r.

2.6 Lemma. For κ ∈ R,

T (κ) =
∑
i,j∈I

ci,j(κ)ei,j .
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Proof. Let κ ∈ R. Since {ei,j | i, j ∈ I} is a basis for N , we have T (κ) =∑
i,j∈I αi,jei,j for some αi,j ∈ K. For each j ∈ I we have∑

i∈I
αi,jei =

∑
i,l∈I

αi,lei,l(ej)

= T (κ)(ej) = κej

=
∑
i∈I

ci,j(κ)ei (Lemma 2.2).

Therefore, αi,j = ci,j(κ) for all i, j ∈ I and the claim follows. �

Put S = imT .

2.7 Theorem. S = EndKG(E⊗r).

Proof. Since R = (KΓr)G, it follows from Lemma 2.5 that S = imT =

im T̂ |R ⊆ NG = EndKG(E⊗r).
For the other inclusion, it is enough to show that the orthogonal comple-

ment of S in NG is trivial, where N has the (non-degenerate) bilinear form
induced by 〈ei,j , ek,l〉 = δ(i,j),(k,l) (Kronecker delta). Let f =

∑
i,j∈I αi,jei,j

be an element of this orthogonal complement. For κ ∈ R, we have

0 = 〈f, T (κ)〉

=
∑
i,j∈I

∑
k,l∈I

αi,jck,l(κ)〈ei,j , ek,l〉 (Lemma 2.6)

=
∑
i,j∈I

αi,jci,j(κ).

Since f is fixed by G, it follows that αiσ,jσ = αi,j for every σ ∈ G.
Therefore, choosing a set B of orbit representatives of I × I under the
diagonal action of G, we have

0 =
∑
i,j∈I

αi,jci,j =
∑

(i,j)∈B

∑
σ∈G/G(i,j)

αiσ,jσciσ,jσ =
∑

(i,j)∈B

|G : G(i,j)|αi,jci,j ,

where G(i,j) is the stabilizer of (i, j) in G and G/G(i,j) is a set of represen-
tatives for the right cosets of G(i,j) in G, and where we have used Lemma
2.3. Using Theorem 2.4, we have αi,j = 0 for each (i, j) ∈ B (and hence for
each i, j ∈ I) so that f = 0 as desired. �

For a K-coalgebra C the dual space C∗ has a natural structure of K-
algebra [Ab, p. 55]. In particular, A∗ is a K-algebra.

2.8 Theorem. The map ψ : S → A∗ given by ψ(T (κ))(c) = c(κ) is an
isomorphism of K-algebras.

Proof. By Theorem 1.3, ψ is a K-isomorphism. Using the argument of [Ma,
2.3.5 and following paragraph] with the aid of Lemma 2.6, one sees that it
is an algebra homomorphism as well. �
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Assume for the moment that G = Σr (full symmetric group). The diago-
nal subgroup D = {(a, . . . , a) | a ∈ Γ} of Γr identifies naturally with Γ. Note
that KD ⊆ R. The functions ci,j |KD (i, j ∈ I) coincide with the standard
basis vectors of the classical coefficient coalgebra Ar [Ma, 1.3.4]. In view
of Theorem 2.4, the map ci,j 7→ ci,j |KD defines a coalgebra isomorphism
A ∼= Ar.

Next, the image of the map T |KD : KD → EndK(E⊗r) is the classical
Schur algebra Sr [Ma, 2.1.1]. In particular, Sr ⊆ S. Since S ∼= A∗ (Theorem
2.8) and Sr ∼= A∗r [Ma, 2.3.5] we have S = Sr. (One could also see this by
using Theorem 2.7 and Schur’s Commutation Theorem [Ma, 2.1.3].)

In the other extreme, if G = {e}, then S = EndK(E⊗r) (Theorem 2.7).

3. Decompositions by irreducible characters

From now on we let K be the field C of complex numbers and adjust
the notation accordingly. Let Irr(G) be the set of (ordinary) irreducible
characters of G and fix χ ∈ Irr(G). Define a linear map τχ : A→ A by

τχ(ci,j) =
χ(e)

|G|
∑
σ∈G

χ(σ−1)ci,jσ.

3.1 Theorem. The function τχ is well-defined and

(τχ ⊗ τχ) ◦ 4 = 4 ◦ τχ.

Proof. Suppose that ci,j = ck,l. By Lemma 2.3, we have (k, l) = (iσ, jσ) for
some σ ∈ G. Then∑

µ∈G
χ(µ−1)ck,lµ =

∑
µ∈G

χ(µ−1)ciσ,jσµ =
∑
µ∈G

χ(µ−1)ci,jσµσ−1

=
∑
µ∈G

χ(σ−1µ−1σ)ci,jµ =
∑
µ∈G

χ(µ−1)ci,jµ,

so τχ(ck,l) = τχ(ci,j) and τχ is well-defined.
Let i, j ∈ I. Using Theorem 2.4 we have

[(τχ ⊗ τχ) ◦ 4](ci,j) = (τχ ⊗ τχ)(
∑
k∈I

ci,k ⊗ ck,j) =
∑
k

τχ(ci,k)⊗ τχ(ck,j)

=
∑
k

(
χ(e)

|G|
∑
σ∈G

χ(σ−1)ci,kσ

)
⊗

χ(e)

|G|
∑
µ∈G

χ(µ−1)ck,jµ


=
χ(e)2

|G|2
∑
σ,µ

χ(σ−1)χ(µ−1)

(∑
k

ciσ−1,k ⊗ ck,jµ

)

=
χ(e)2

|G|2
∑
σ,µ

χ(σ−1)χ(µ−1)4(ciσ−1,jµ).
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Since ciσ−1,jµ = ci,jµσ, we can put ρ = µσ on the right and get

[(τχ ⊗ τχ) ◦ 4](ci,j) = 4

[
χ(e)

|G|
∑
ρ

(
χ(e)

|G|
∑
σ

χ(σ−1)χ(σρ−1)

)
ci,jρ

]

= 4

[
χ(e)

|G|
∑
ρ

χ(ρ−1)ci,jρ

]
= [4 ◦ τχ](ci,j),

where we have used the generalized orthogonality relation [Is, 2.13] in the
next to the last step. The theorem follows. �

Define

tχ =
χ(e)

|G|
∑
σ∈G

χ(σ−1)σ ∈ CG.

We have t2χ = tχ [Is, 2.12 and proof of 2.13]. Put Eχ = E⊗rtχ, the sym-
metrized tensor space corresponding to the character χ.

Let Aχ denote the coefficient coalgebra of the R-module Eχ and let Tχ :
R→ EndC(Eχ) be the representation afforded by Eχ. Put Sχ = imTχ.

The space N = EndC(E⊗r) is a left CG-module with action determined
by (σf)(v) = f(vσ) (σ ∈ G).

3.2 Theorem.

(i) tχS is a subalgebra of S and Sχ ∼= tχS as C-algebras,
(ii) τχ(A) is a subcoalgebra of A and Aχ = τχ(A).

Proof. (i) For f, g,∈ S and v ∈ E⊗r, we have, using Theorem 2.7,

[(tχf)(tχg)](v) = (tχf)
(
g(vtχ)

)
= f

(
g(vtχ)tχ

)
= f

(
g(vt2χ)

)
= f

(
g(vtχ)

)
= (fg)(vtχ)

= [tχ(fg)](v).

Therefore, (tχf)(tχg) = tχ(fg), so that tχS is a subalgebra of S.
Define ϕ : tχS → Sχ by ϕ(tχT (κ)) = Tχ(κ) (κ ∈ R). We have

tχT (κ) = tχT (λ) ⇐⇒
(
tχT (κ)

)
(v) =

(
tχT (λ)

)
(v) for all v ∈ E⊗r

⇐⇒ T (κ)(vtχ) = T (λ)(vtχ) for all v ∈ E⊗r

⇐⇒ Tχ(κ) = Tχ(λ),

so ϕ is well defined and injective. It is immediate that ϕ is surjective and
C-linear, so it is a C-isomorphism.

Finally, for κ, λ ∈ R, we have, using the first part of the proof,

ϕ((tχT (κ))(tχT (λ)) = ϕ(tχT (κ)T (λ)) = ϕ(tχT (κλ))

= Tχ(κλ) = Tχ(κ)Tχ(λ) = ϕ(tχT (κ))ϕ(tχT (λ)),

so ϕ is a C-algebra isomorphism.
(ii) First, τχ(A) is a subcoalgebra of A by Theorem 3.1.
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Next, we show that τχ(A) ⊆ Aχ. By Lemma 1.2(ii), it is enough to show
that τχ(ci,j)(κ) = 0 for all κ ∈ kerTχ and i, j ∈ I. Let κ ∈ kerTχ and fix
i, j ∈ I.

The group G acts on the set NR of functions from R to N from the left
by (σf)(µ) = σf(µ) and on N∗ from the right by (fσ)(e) = f(σe).

(Step 1) e∗i,j ◦ tχT = e∗i,jtχ ◦ T . We have, for µ ∈ R,

(e∗i,j ◦ tχT )(µ) = e∗i,j
(
tχT (µ)

)
= (e∗i,jtχ)

(
T (µ)

)
= (e∗i,jtχ ◦ T )(µ).

(Step 2) τχ(ci,j) = e∗i,j ◦ tχT . One checks that, for σ ∈ G, σei,j = ei,jσ−1

and, in turn, e∗i,jσ = e∗i,jσ. We have

τχ(ci,j) =
χ(e)

|G|
∑
σ∈G

χ(σ−1)ci,jσ

=
χ(e)

|G|
∑
σ

χ(σ−1)e∗i,jσ ◦ T (Lemma 2.6)

= e∗i,jtχ ◦ T
= e∗i,j ◦ tχT (Step 1).

(Step 3) (tχT )(κ) = 0. For v ∈ E⊗r we have(
(tχT )(κ)

)
(v) =

(
tχT (κ)

)
(v) = T (κ)(vtχ) = κ(vtχ) = 0

since vtχ ∈ Eχ and κ ∈ kerTχ.
Therefore,

τχ(ci,j)(κ) = e∗i,j
(
(tχT )(κ)

)
(Step 2)

= e∗i,j(0) (Step 3)

= 0,

and we conclude that τχ(A) ⊆ Aχ.
Finally, we show that Aχ ⊆ τχ(A). For κ ∈ R and j ∈ I we have

κejtχ = κejt
2
χ =

χ(e)

|G|
∑
σ∈G

χ(σ−1)κejσtχ

=
χ(e)

|G|
∑
σ

χ(σ−1)
∑
i∈I

ci,jσ(κ)eitχ (Lemma 2.2)

=
∑
i

τχ(ci,j)(κ)eitχ

and, since some subset of {eitχ | i ∈ I} is a basis for Eχ, the claim follows. �

It follows from the orthogonality relations of characters [Is, 2.13, 2.18]
that the maps τχ (χ ∈ Irr(G)) are pairwise orthogonal idempotents that
sum to 1A:

(i) τχτψ = δχ,ψτχ (Kronecker delta),
(ii)

∑
χ∈Irr(G) τχ = 1A.
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3.3 Theorem. A ∼=
⊕

χ∈Irr(G)Aχ.

Proof. By (ii) of the preceding paragraph and Theorem 3.2(ii),

A =
∑

χ∈Irr(G)

τχ(A) =
∑

χ∈Irr(G)

Aχ,

and by (i) of the preceding paragraph the sum is direct. �

3.4 Theorem. The map ψχ : Sχ → A∗χ given by ψχ(Tχ(κ))(c) = c(κ) is a
C-algebra isomorphism.

Proof. Let ψ : S → A∗ be the isomorphism of Theorem 2.8 and let η : S →
Sχ be the epimorphism induced by restriction: η(T (κ)) = T (κ)|Eχ . Then
ψ(ker η) = A0

χ (= annihilator of Aχ). Indeed, for κ ∈ R, we have

ψ(T (κ)) ∈ A0
χ ⇐⇒ ψ(T (κ))(c) = 0 ∀ c ∈ Aχ
⇐⇒ c(κ) = 0 ∀ c ∈ Aχ
⇐⇒ κ ∈ kerTχ (Lemma 1.2(i))

⇐⇒ T (κ)|Eχ = Tχ(κ) = 0

⇐⇒ T (κ) ∈ ker η.

Therefore, we have C-algebra isomorphisms

Sχ ∼= S/ ker η ∼= A∗/A0
χ
∼= A∗χ

(the last C-isomorphism is an algebra isomorphism by Theorem 3.2(ii) and
[Ab, 2.3.1(ii)]). Calling the composition ψχ and the composition of just the
last two ϕ, we have

ψχ
(
Tχ(κ)

)
(c) = ϕ

(
T (κ)

)
(c) = ψ

(
T (κ)

)
(c) = ψ

(
T (κ)

)
(c) = c(κ).

�

3.5 Theorem. S ∼=
⊕

χ∈Irr(G) Sχ.

Proof. This follows from Theorems 2.8, 3.3, and 3.4. �

For i ∈ I, let Gi denote the stabilizer of i in G.

3.6 Theorem. We have

dimCAχ =
χ(e)

|G|
∑

(i,j)∈B

∑
σ∈GjGi

χ
(
σ−1

)
,

where B is a set of representatives for the orbits of I × I under the diagonal
action of G.

Proof. By Theorem 3.2(ii), we have Aχ = τχ(A). Since τ2χ = τχ, an eigen-
value of τχ is either 1 or 0, so the rank of τχ equals its trace. Therefore, it
is enough to show that the trace of τχ is given by the formula on the right.
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Fix i, j ∈ I and let D be a set of representatives of the (Gj , Gi) double
cosets in G chosen with e ∈ D. For δ ∈ D, let Rδ be a set of representatives
of the right cosets of Gi ∩ δ−1Gjδ in Gi so that

GjδGi =
⋃̇

ρ∈Rδ
Gjδρ

(disjoint union) [Su, proof of 3.8(iv)]. We have

τχ(ci,j) =
χ(e)

|G|
∑
σ∈G

χ
(
σ−1

)
ci,jσ

=
χ(e)

|G|
∑
δ∈D

∑
µ∈Gj
ρ∈Rδ

χ
(
(µδρ)−1

)
ci,j(µδρ).

In the last sum, we have

ci,j(µδρ) = ci,j(δρ) = ciρ−1,jδ = ci,jδ

so

τχ(ci,j) =
χ(e)

|G|
∑
δ∈D

∑
µ∈Gj
ρ∈Rδ

χ
(
(µδρ)−1

)
ci,jδ.

Let δ, ε ∈ D and assume that (i, jδ) ∼ (i, jε) so that (i, jδ) = (iπ, jεπ)
for some π ∈ G. Then π ∈ Gi and επδ−1 ∈ Gj , whence GjεGi = GjεπGi =
GjδGi, implying that ε = δ. We conclude that the ci,jδ appearing in the
linear combination above are distinct and that ci,jδ = ci,j if and only if δ = e.
Therefore,

tr τχ =
∑

(i,j)∈B

(
χ(e)

|G|
∑
µ∈Gj
ρ∈Re

χ
(
(µeρ)−1

))

=
χ(e)

|G|
∑

(i,j)∈B

∑
σ∈GjGi

χ
(
σ−1

)
as claimed. �
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