THE COEFFICIENT COALGEBRA OF A SYMMETRIZED TENSOR SPACE

RANDALL R. HOLMES DAVID P. TURNER

ABSTRACT. The coefficient coalgebra of r-fold tensor space and its dual, the Schur algebra, are generalized in such a way that the role of the symmetric group Σ_r is played by an arbitrary subgroup of Σ_r . The dimension of the coefficient coalgebra of a symmetrized tensor space is computed and the dual of this coalgebra is shown to be isomorphic to the analog of the Schur algebra.

0. Introduction

Let K be the field of complex numbers. The vector space $E = K^n$ is naturally viewed as a (left) module for the group algebra KΓ of the general linear group $\Gamma = GL_n(K)$. The r-fold tensor product $E^{\otimes r}$ is in turn a module for $K\Gamma^r$, where $\Gamma^r = \Gamma \times \cdots \times \Gamma$ (*r* factors). Let G be a subgroup of the symmetric group Σ_r and let $\chi : G \to K$ be an irreducible character of G. The "symmetrized tensor space" associated with χ is $E^{\chi} = E^{\otimes r} t_{\chi}$, where t_x is the central idempotent of the group algebra KG corresponding to χ (with the action of G on $E^{\otimes r}$ being given by place permutation).

In this paper, we study the coefficient coalgebra A_x of the R-module E^{χ} , where R is the subalgebra of $K\Gamma^{r}$ consisting of those elements fixed by G under the action of Σ_r on Γ^r given by entry permutation. (If V is an R-module with finite K-basis $\{v_j | j \in J\}$, then for each $\kappa \in R$, we have $\kappa v_j = \sum_i \alpha_{ij}(\kappa) v_i$ for some $\alpha_{ij} : R \to K$. The linear span of the functions α_{ij} $(i, j \in J)$ has a natural coalgebra structure. It is the "coefficient coalgebra" of V, denoted $cf(V)$.)

Section [1](#page-1-0) sets up notation and presents some standard results suitably generalized to the current situation.

In Section [2,](#page-3-0) we obtain generalizations of some classical results (i.e., results for the case $G = \Sigma_r$). In particular, we show that the image S of the representation afforded by the R-module $E^{\otimes r}$ equals the set of those endomorphisms of $E^{\otimes r}$ that commute with the action of G (Theorem [2.7\)](#page-6-0). This generalizes Schur's Commutation Theorem [\[Ma,](#page-11-0) 2.1.3] in the classical case, where S is the "Schur algebra." We also observe that the algebra isomorphism $S \cong A^*$ $(A = cf(E^{\otimes r}))$ in the classical case [\[Ma,](#page-11-0) 2.3.5 and following paragraph] continues to hold with G arbitrary (Theorem [2.8\)](#page-6-1).

Date: April 26, 2011.

¹⁹⁹¹ Mathematics Subject Classification. 20G43, 16T15.

In Section [3,](#page-7-0) we study the coefficient coalgebra A_x and the corresponding analog S_χ of the Schur algebra and establish an algebra isomorphism $S_\chi \cong$ A^*_{χ} (Theorem [3.4\)](#page-10-0). We exhibit decompositions of A and S in terms of the various A_χ and S_χ , respectively (Theorems [3.3](#page-10-1) and [3.5\)](#page-10-2), and end by providing a formula for the dimension of A_χ over K (Theorem [3.6\)](#page-10-3).

Some of the results of this paper appear in the Ph.D. dissertation [\[Tu\]](#page-11-1) of the second author written under the direction of the first author. We thank the referee for some useful suggestions.

1. NOTATION AND BACKGROUND

Let G be a fixed subgroup of the symmetric group Σ_r .

For the general results of this section and the next, the field K can be more general than the field of complex numbers. We assume only that K is an infinite field of characteristic not a divisor of $|G|$. Fix a positive integer n. The vector space $E = K^n$ is acted on naturally (from the left) by the semigroup $M = \text{Mat}_n(K)$ of $n \times n$ matrices over K and is therefore a KMmodule, where KM is the semigroup algebra of M over K.

The group G acts from the right on $M^r = M \times \cdots \times M$ (r factors) by $m\sigma = (m_{\sigma(1)}, m_{\sigma(2)}, \dots, m_{\sigma(r)}) \ (m \in M^r, \sigma \in G).$

The semigroup M^r acts on $E^{\otimes r} = E \otimes \cdots \otimes E$ (*r* factors) by $mv =$ $m_1v_1\otimes\cdots\otimes m_r v_r$ $(m\in M^r, v=v_1\otimes\cdots\otimes v_r\in E^{\otimes r})$. This action extends linearly to make $E^{\otimes r}$ a KM^r -module.

For each $1 \leq \alpha \leq n$, let $e_{\alpha} \in E$ be the *n*-tuple with β -entry $\delta_{\alpha\beta}$ (Kronecker delta). Let $I = \{i = (i_1, \ldots, i_r) \in \mathbf{Z}^r | 1 \leq i_j \leq n \text{ for all } j\}$. The space $E^{\otimes r}$ has basis $\{e_i \mid i \in I\}$, where $e_i := e_{i_1} \otimes \cdots \otimes e_{i_r}$.

For $m \in M^r$ and $i, j \in I$, define $m_{i,j} = \prod_{\alpha=1}^r (m_\alpha)_{i_\alpha j_\alpha}$.

1.1 LEMMA. Let $m \in M^r$.

(i)
$$
me_j = \sum_i m_{i,j} e_i
$$
 $(j \in I)$.
\n(ii) $(m\sigma)_{i,j} = m_{i\sigma^{-1},j\sigma^{-1}}$ $(\sigma \in G, i, j \in I)$.

Proof. (i) For all $j \in I$, we have

$$
me_j = m_1e_{j_1} \otimes \cdots \otimes m_re_{j_r} = \left(\sum_{i_1=1}^n (m_1)_{i_1j_1}e_{i_1}\right) \otimes \cdots \otimes \left(\sum_{i_r=1}^n (m_r)_{i_rj_r}e_{i_r}\right)
$$

$$
= \sum_{i \in I} \prod_{\alpha=1}^r (m_\alpha)_{i_\alpha j_\alpha}e_{i_1} \otimes \cdots \otimes e_{i_r} = \sum_{i \in I} m_{i,j}e_i.
$$

(ii) For all $\alpha \in C$ and $i, i \in I$, we have

(ii) For all $\sigma \in G$ and $i, j \in I$, we have

$$
(m\sigma)_{i,j} = \prod_{\alpha=1}^r (m_{\sigma(\alpha)})_{i_{\alpha}j_{\alpha}} = \prod_{\alpha} (m_{\alpha})_{i_{\sigma^{-1}(\alpha)}j_{\sigma^{-1}(\alpha)}}
$$

$$
= \prod_{\alpha} (m_{\alpha})_{(i\sigma^{-1})_{\alpha}(j\sigma^{-1})_{\alpha}}
$$

$$
= m_{i\sigma^{-1},j\sigma^{-1}},
$$

Let $\Gamma = GL_n(K) \subseteq M$ and put $\Gamma^r = \Gamma \times \cdots \times \Gamma \subseteq M^r$. The right action of G on M^r induces an action on the group algebra $K\Gamma^r$ of Γ^r over K. Denote by R the subalgebra of $K\Gamma^r$ consisting of those elements fixed by G:

$$
R = (K\Gamma^r)^G = \{ \kappa \in K\Gamma^r \mid \kappa \sigma = \kappa \text{ for all } \sigma \in G \}.
$$

The set $\{\bar{g} | g \in \Gamma^r\}$ is a K-basis for R, where

$$
\bar{g} = \frac{1}{|G|} \sum_{\sigma \in G} g\sigma.
$$

Let V be an R-module with finite K-basis $\{v_j | j \in J\}$. For $\kappa \in R$ and $j \in J$, we have

$$
\kappa v_j = \sum_{i \in J} \alpha_{ij}(\kappa) v_i
$$

for some $\alpha_{ij} \in R^* = \text{Hom}_K(R, K)$ (dual space of R). The K-linear span of the set $\{\alpha_{ij} | i, j \in J\}$ is the **coefficient space** of the R-module V, denoted $cf(V)$. This space is independent of the choice of basis for V.

If $R_K(R)$ is the representative K-bialgebra of the multiplicative semigroup R, then V is a right $R_K(R)$ -comodule with structure map $\psi: V \to V \otimes$ $R_K(R)$ given by $\psi(v_j) = \sum_{i \in J} v_i \otimes \alpha_{ij}$. We have

$$
\triangle(\alpha_{ij})=\sum_k \alpha_{ik}\otimes \alpha_{kj},
$$

$$
\epsilon(\alpha_{ij})=\delta_{ij},
$$

so that cf(V) is a subcoalgebra of $R_K(R)$ [\[Ab,](#page-11-2) p. 125].

Let $\rho: R \to \text{End}_K(V)$ be the representation afforded by the R-module V .

1.2 Lemma.

- (i) For $\kappa \in R$, we have $\kappa \in \ker \rho$ if and only if $f(\kappa) = 0$ for all $f \in$ $cf(V)$.
- (ii) For $f \in R^*$, we have $f \in cf(V)$ if and only if $f(\kappa) = 0$ for all $\kappa \in \ker \rho$.

Proof. See proof of $[Ma, 2.2.1]$.

1.3 THEOREM. The map ψ : im $\rho \to cf(V)^*$ given by $\psi(\rho(\kappa))(c) = c(\kappa)$ is a K-isomorphism.

Proof. The bilinear map im $\rho \times cf(V) \to K$ given by $\langle \rho(\kappa), c \rangle = c(\kappa)$ is well defined and nondegenerate by Lemma [1.2.](#page-2-0) Since the spaces im ρ and cf(V) are finite dimensional, the induced map ψ : im $\rho \to cf(V)^*$ is a Kisomorphism.

2. Generalized coefficient coalgebra and Schur algebra

We continue to assume that K is an infinite field of characteristic not a divisor of $|G|$. Recall that R is the subalgebra of KT^r consisting of those elements fixed by G.

For $i, j \in I$ define $c_{i,j} : R \to K$ by putting

$$
c_{i,j}(\bar{g}) = \frac{1}{|G|} \sum_{\sigma \in G} (g\sigma)_{i,j}
$$

 $(g \in \Gamma^r)$ and extending linearly to R.

2.1 LEMMA. The function $c_{i,j}$ is well-defined.

Proof. Let $g, h \in \Gamma^r$ and assume that $\bar{g} = \bar{h}$. Then $h = g\tau$ for some $\tau \in G$, so

$$
c_{i,j}(\bar{h}) = \frac{1}{|G|} \sum_{\sigma \in G} (h\sigma)_{i,j} = \frac{1}{|G|} \sum_{\sigma \in G} (g\tau\sigma)_{i,j} = c_{i,j}(\bar{g}).
$$

2.2 LEMMA. For $\kappa \in R$ and $j \in I$,

$$
\kappa e_j = \sum_{i \in I} c_{i,j}(\kappa) e_i.
$$

Proof. Let $g \in \Gamma^r$. It suffices to establish the equality in the case $\kappa = \bar{g}$. For $j \in I$ we have

$$
\bar{g}e_j = \frac{1}{|G|} \sum_{\sigma \in G} (g\sigma)e_j = \frac{1}{|G|} \sum_{\sigma \in G} \sum_{i \in I} (g\sigma)_{i,j} e_i = \sum_{i \in I} c_{i,j}(\bar{g})e_i,
$$

where the second equality uses Lemma [1.1.](#page-1-1)

The group G acts on I from the right by $i\sigma = (i_{\sigma(1)}, i_{\sigma(2)}, \ldots, i_{\sigma(r)})$. In turn, G acts on $I \times I$ diagonally: $(i, j)\sigma = (i\sigma, j\sigma)$. For $i, j, k, l \in I$, put $(i, j) \sim (k, l)$ if $(k, l) = (i, j)\sigma = (i\sigma, j\sigma)$ for some $\sigma \in G$.

2.3 LEMMA. $c_{i,j} = c_{k,l}$ if and only if $(i, j) \sim (k, l)$.

Proof. For $i, j \in I$, define $\hat{c}_{i,j} : M^r \to K$ by

$$
\hat{c}_{i,j}(m) = \frac{1}{|G|} \sum_{\sigma \in G} (m\sigma)_{i,j},
$$

and note that for $g \in \Gamma^r$ we have $\hat{c}_{i,j}(g) = c_{i,j}(\bar{g})$.

Let $i, j, k, l \in I$ and assume that $c_{i,j} = c_{k,l}$. Then $\hat{c}_{i,j}(g) = \hat{c}_{k,l}(g)$ for each $g \in \Gamma^r$ and, since Γ^r is Zariski dense in M^r , it follows that $\hat{c}_{i,j} = \hat{c}_{k,l}$.

Define $b_{i,j} = (b_{i_1j_1}, \ldots, b_{i_rj_r}) \in M^r$, where $(b_{ab})_{cd} = \delta_{(a,b),(c,d)}$ (Kronecker delta) and note that $(b_{i,j})_{x,y} = \delta_{(i,j),(x,y)}$. For $x, y \in I$, we get, using Lemma

$$
\qquad \qquad \Box
$$

[1.1,](#page-1-1)

$$
\hat{c}_{x,y}(b_{i,j}) = \frac{1}{|G|} \sum_{\sigma \in G} (b_{i,j}\sigma)_{x,y}
$$

$$
= \frac{1}{|G|} \sum_{\sigma \in G} (b_{i,j})_{x\sigma^{-1}, y\sigma^{-1}}
$$

$$
= \begin{cases} \frac{|G_{(i,j)}|}{|G|}, & (x,y) \sim (i,j) \\ 0, & \text{otherwise,} \end{cases}
$$

where $G_{(i,j)}$ is the stabilizer of (i,j) in G. Since

$$
\hat{c}_{k,l}(b_{i,j}) = \hat{c}_{i,j}(b_{i,j}) = \frac{|G_{(i,j)}|}{|G|} \neq 0,
$$

we conclude that $(k, l) \sim (i, j)$.

Now assume that $(i, j) \sim (k, l)$ so that $(k, l) = (i\sigma, j\sigma)$ for some $\sigma \in G$. For any $g \in \Gamma^r$, Lemma [1.1](#page-1-1) gives

$$
(g\sigma^{-1})_{i,j} = g_{i\sigma,j\sigma} = g_{k,l},
$$

so

$$
c_{i,j}(\bar{g}) = \frac{1}{|G|} \sum_{\tau \in G} (g\tau)_{i,j} = \frac{1}{|G|} \sum_{\tau \in G} (g\tau \sigma^{-1})_{i,j}
$$

$$
= \frac{1}{|G|} \sum_{\tau \in G} (g\tau)_{k,l} = c_{k,l}(\bar{g}).
$$

Therefore, $c_{i,j} = c_{k,l}$.

Let A be the coefficient space of the R-module $E^{\otimes r}$.

2.4 THEOREM.

- (i) The space A has K-basis $\{c_{i,j} | (i,j) \in B\}$, where B is a set of representatives for the orbits of $I \times I$ under the diagonal action of G.
- (ii) A is a coalgebra with structure maps

$$
\triangle(c_{i,j}) = \sum_{k \in I} c_{i,k} \otimes c_{k,j},
$$

$$
\epsilon(c_{i,j}) = \delta_{i,j}.
$$

Proof. (i) By Lemma [2.2,](#page-3-1) the space A is the K-linear span of $\{c_{i,j} | i, j \in I\}$, which equals ${c_{i,j} | (i, j) \in B}$ by Lemma [2.3.](#page-3-2)

Suppose that $\sum_{(i,j)\in B} \alpha_{i,j}c_{i,j} = 0$ with $\alpha_{i,j} \in K$. Let $\hat{c}_{i,j} : M^r \to$ K be as in the proof of Lemma [2.3.](#page-3-2) Since $\hat{c}_{i,j}(g) = c_{i,j}(\bar{g})$, we have $\sum_{(i,j)\in B} \alpha_{i,j} \hat{c}_{i,j}(g) = 0$ for all $g \in \Gamma^r$. Since Γ^{r^r} is Zariski dense in M^r ,

we have $\sum_{(i,j)\in B} \alpha_{i,j}\hat{c}_{i,j} = 0$. Let $(x, y) \in B$. With $b_{x,y}$ as in the proof of Lemma [2.3](#page-3-2) we have (using the formula in that proof)

$$
\alpha_{x,y} = \frac{|G|}{|G_{(x,y)}|} \sum_{(i,j) \in B} \alpha_{i,j} \hat{c}_{i,j}(b_{x,y}) = 0.
$$

Therefore, $\{c_{i,j} | (i,j) \in B\}$ is linearly independent.

(ii) This follows from Lemma [2.2](#page-3-1) and the discussion in Section [1.](#page-1-0) \Box

The group G acts on $E^{\otimes r}$ by $e_i \sigma = e_{i\sigma}$ $(i \in I)$ and this action extends linearly to make $E^{\otimes r}$ a right KG-module. In fact $E^{\otimes r}$ is a (KM^r, KG) bimodule. One checks that $v\sigma = v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(r)}$ for all $v = v_1 \otimes \cdots \otimes v_r \in$ $E^{\otimes r}$.

The set $N = \text{End}_K(E^{\otimes r})$ is a right KG-module with action given by $(f\sigma)(v) = f(v\sigma^{-1})\sigma \; (\sigma \in G)$. Moreover, $N^G = \text{End}_{KG}(E^{\otimes r})$, where N^G is the set of those elements of N fixed by G .

Let $\hat{T}: K\Gamma^r \to \text{End}_K(E^{\otimes r})$ be the representation afforded by the $K\Gamma^r$ module $E^{\otimes r}$.

2.5 LEMMA. \hat{T} is a KG-homomorphism.

Proof. Let $g \in \Gamma^r$, $\sigma \in G$, and $v = v_1 \otimes \cdots \otimes v_r \in E^{\otimes r}$. We have

$$
[\hat{T}(g)\sigma](v) = (\hat{T}(g)(v\sigma^{-1})) \sigma
$$

\n
$$
= (\hat{T}(g)(v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(r)}) \sigma
$$

\n
$$
= (g_1v_{\sigma^{-1}(1)} \otimes \cdots \otimes g_rv_{\sigma^{-1}(r)}) \sigma
$$

\n
$$
= w_{\sigma(1)} \otimes \cdots \otimes w_{\sigma(r)} \qquad (w_i := g_iv_{\sigma^{-1}(i)})
$$

\n
$$
= g_{\sigma(1)}v_1 \otimes \cdots \otimes g_{\sigma(r)}v_r
$$

\n
$$
= [\hat{T}(g\sigma)](v).
$$

Therefore, $\hat{T}(g\sigma) = \hat{T}(g)\sigma$ as claimed.

The K-space N has basis $\{e_{i,j} | i,j \in I\}$, where

$$
e_{i,j}(e_k) = \delta_{jk} e_i
$$

(Kronecker delta).

The map $T = \hat{T}|_R : R \to \text{End}_K(E^{\otimes r})$ is the representation afforded by the R-module $E^{\otimes r}$.

2.6 LEMMA. For $\kappa \in R$,

$$
T(\kappa) = \sum_{i,j \in I} c_{i,j}(\kappa) e_{i,j}.
$$

Proof. Let $\kappa \in R$. Since $\{e_{i,j} | i,j \in I\}$ is a basis for N, we have $T(\kappa) =$ $\sum_{i,j\in I}\alpha_{i,j}e_{i,j}$ for some $\alpha_{i,j}\in K$. For each $j\in I$ we have

$$
\sum_{i \in I} \alpha_{i,j} e_i = \sum_{i,l \in I} \alpha_{i,l} e_{i,l}(e_j)
$$

$$
= T(\kappa)(e_j) = \kappa e_j
$$

$$
= \sum_{i \in I} c_{i,j}(\kappa) e_i \qquad \text{(Lemma 2.2)}.
$$

Therefore, $\alpha_{i,j} = c_{i,j}(\kappa)$ for all $i, j \in I$ and the claim follows.

Put $S = \text{im } T$.

2.7 THEOREM. $S = \text{End}_{KG}(E^{\otimes r})$.

Proof. Since $R = (K\Gamma^r)^G$, it follows from Lemma [2.5](#page-5-0) that $S = \text{im } T =$ $\lim \hat{T} |_{R} \subseteq N^{G} = \text{End}_{KG}(E^{\otimes r}).$

For the other inclusion, it is enough to show that the orthogonal complement of S in N^G is trivial, where N has the (non-degenerate) bilinear form induced by $\langle e_{i,j}, e_{k,l} \rangle = \delta_{(i,j),(k,l)}$ (Kronecker delta). Let $f = \sum_{i,j \in I} \alpha_{i,j} e_{i,j}$ be an element of this orthogonal complement. For $\kappa \in R$, we have

$$
0 = \langle f, T(\kappa) \rangle
$$

=
$$
\sum_{i,j \in I} \sum_{k,l \in I} \alpha_{i,j} c_{k,l}(\kappa) \langle e_{i,j}, e_{k,l} \rangle
$$
 (Lemma 2.6)
=
$$
\sum_{i,j \in I} \alpha_{i,j} c_{i,j}(\kappa).
$$

Since f is fixed by G, it follows that $\alpha_{i\sigma,j\sigma} = \alpha_{i,j}$ for every $\sigma \in G$. Therefore, choosing a set B of orbit representatives of $I \times I$ under the diagonal action of G , we have

$$
0 = \sum_{i,j \in I} \alpha_{i,j} c_{i,j} = \sum_{(i,j) \in B} \sum_{\sigma \in G/G_{(i,j)}} \alpha_{i\sigma,j\sigma} c_{i\sigma,j\sigma} = \sum_{(i,j) \in B} |G : G_{(i,j)}| \alpha_{i,j} c_{i,j},
$$

where $G_{(i,j)}$ is the stabilizer of (i,j) in G and $G/G_{(i,j)}$ is a set of representatives for the right cosets of $G_{(i,j)}$ in G, and where we have used Lemma [2.3.](#page-3-2) Using Theorem [2.4,](#page-4-0) we have $\alpha_{i,j} = 0$ for each $(i, j) \in B$ (and hence for each $i, j \in I$) so that $f = 0$ as desired.

For a K-coalgebra C the dual space C^* has a natural structure of Kalgebra $[Ab, p. 55]$. In particular, A^* is a K-algebra.

2.8 THEOREM. The map $\psi : S \to A^*$ given by $\psi(T(\kappa))(c) = c(\kappa)$ is an isomorphism of K-algebras.

Proof. By Theorem [1.3,](#page-2-1) ψ is a K-isomorphism. Using the argument of [\[Ma,](#page-11-0) 2.3.5 and following paragraph] with the aid of Lemma [2.6,](#page-5-1) one sees that it is an algebra homomorphism as well.

Assume for the moment that $G = \Sigma_r$ (full symmetric group). The diagonal subgroup $D = \{(a, \ldots, a) | a \in \Gamma\}$ of Γ^r identifies naturally with Γ . Note that $KD \subseteq R$. The functions $c_{i,j}|_{KD}$ $(i, j \in I)$ coincide with the standard basis vectors of the classical coefficient coalgebra A_r [\[Ma,](#page-11-0) 1.3.4]. In view of Theorem [2.4,](#page-4-0) the map $c_{i,j} \mapsto c_{i,j} |_{KD}$ defines a coalgebra isomorphism $A \cong A_r$.

Next, the image of the map $T|_{KD}: KD \to \text{End}_K(E^{\otimes r})$ is the classical Schur algebra S_r [\[Ma,](#page-11-0) 2.1.1]. In particular, $S_r \subseteq S$. Since $S \cong A^*$ (Theorem [2.8\)](#page-6-1) and $S_r \cong A_r^*$ [\[Ma,](#page-11-0) 2.3.5] we have $S = S_r$. (One could also see this by using Theorem [2.7](#page-6-0) and Schur's Commutation Theorem [\[Ma,](#page-11-0) 2.1.3].)

In the other extreme, if $G = \{e\}$, then $S = \text{End}_K(E^{\otimes r})$ (Theorem [2.7\)](#page-6-0).

3. Decompositions by irreducible characters

From now on we let K be the field C of complex numbers and adjust the notation accordingly. Let $\mathrm{Irr}(G)$ be the set of (ordinary) irreducible characters of G and fix $\chi \in \text{Irr}(G)$. Define a linear map $\tau_{\chi}: A \to A$ by

$$
\tau_{\chi}(c_{i,j}) = \frac{\chi(e)}{|G|} \sum_{\sigma \in G} \chi(\sigma^{-1}) c_{i,j\sigma}.
$$

3.1 THEOREM. The function τ_{χ} is well-defined and

$$
(\tau_{\chi}\otimes\tau_{\chi})\circ\triangle=\triangle\circ\tau_{\chi}.
$$

Proof. Suppose that $c_{i,j} = c_{k,l}$. By Lemma [2.3,](#page-3-2) we have $(k, l) = (i\sigma, j\sigma)$ for some $\sigma \in G$. Then

$$
\sum_{\mu \in G} \chi(\mu^{-1}) c_{k,l\mu} = \sum_{\mu \in G} \chi(\mu^{-1}) c_{i\sigma, j\sigma\mu} = \sum_{\mu \in G} \chi(\mu^{-1}) c_{i, j\sigma\mu\sigma^{-1}}
$$

$$
= \sum_{\mu \in G} \chi(\sigma^{-1} \mu^{-1} \sigma) c_{i,j\mu} = \sum_{\mu \in G} \chi(\mu^{-1}) c_{i,j\mu},
$$

so $\tau_{\chi}(c_{k,l}) = \tau_{\chi}(c_{i,j})$ and τ_{χ} is well-defined.

Let $i, j \in I$. Using Theorem [2.4](#page-4-0) we have

$$
[(\tau_X \otimes \tau_X) \circ \triangle](c_{i,j}) = (\tau_X \otimes \tau_X)(\sum_{k \in I} c_{i,k} \otimes c_{k,j}) = \sum_k \tau_X(c_{i,k}) \otimes \tau_X(c_{k,j})
$$

$$
= \sum_k \left(\frac{\chi(e)}{|G|} \sum_{\sigma \in G} \chi(\sigma^{-1})c_{i,k\sigma}\right) \otimes \left(\frac{\chi(e)}{|G|} \sum_{\mu \in G} \chi(\mu^{-1})c_{k,j\mu}\right)
$$

$$
= \frac{\chi(e)^2}{|G|^2} \sum_{\sigma,\mu} \chi(\sigma^{-1})\chi(\mu^{-1}) \left(\sum_k c_{i\sigma^{-1},k} \otimes c_{k,j\mu}\right)
$$

$$
= \frac{\chi(e)^2}{|G|^2} \sum_{\sigma,\mu} \chi(\sigma^{-1})\chi(\mu^{-1})\triangle(c_{i\sigma^{-1},j\mu}).
$$

Since $c_{i\sigma^{-1},j\mu} = c_{i,j\mu\sigma}$, we can put $\rho = \mu\sigma$ on the right and get

$$
[(\tau_X \otimes \tau_X) \circ \triangle](c_{i,j}) = \triangle \left[\frac{\chi(e)}{|G|} \sum_{\rho} \left(\frac{\chi(e)}{|G|} \sum_{\sigma} \chi(\sigma^{-1}) \chi(\sigma \rho^{-1}) \right) c_{i,j\rho} \right]
$$

$$
= \triangle \left[\frac{\chi(e)}{|G|} \sum_{\rho} \chi(\rho^{-1}) c_{i,j\rho} \right] = [\triangle \circ \tau_X](c_{i,j}),
$$

where we have used the generalized orthogonality relation $[Is, 2.13]$ in the next to the last step. The theorem follows. \Box

Define

$$
t_{\chi} = \frac{\chi(e)}{|G|} \sum_{\sigma \in G} \chi(\sigma^{-1}) \sigma \in \mathbf{C}G.
$$

We have $t_{\chi}^2 = t_{\chi}$ [\[Is,](#page-11-3) 2.12 and proof of 2.13]. Put $E^{\chi} = E^{\otimes r} t_{\chi}$, the symmetrized tensor space corresponding to the character χ .

Let A_χ denote the coefficient coalgebra of the R-module E^χ and let T_χ : $R \to \text{End}_{\mathbf{C}}(E^{\chi})$ be the representation afforded by E^{χ} . Put $S_{\chi} = \text{im } T_{\chi}$.

The space $N = \text{End}_{\mathbf{C}}(E^{\otimes r})$ is a left **C**G-module with action determined by $(\sigma f)(v) = f(v\sigma)$ $(\sigma \in G)$.

3.2 THEOREM.

- (i) $t_{\chi}S$ is a subalgebra of S and $S_{\chi} \cong t_{\chi}S$ as C-algebras,
- (ii) $\tau_{\chi}(A)$ is a subcoalgebra of A and $A_{\chi} = \tau_{\chi}(A)$.

Proof. (i) For $f, g \in S$ and $v \in E^{\otimes r}$, we have, using Theorem [2.7,](#page-6-0)

$$
[(t_X f)(t_X g)](v) = (t_X f)(g(vt_X)) = f(g(vt_X)t_X)
$$

= $f(g(vt_X)) = f(g(vt_X)) = (fg)(vt_X)$
= $[t_X(fg)](v)$.

Therefore, $(t_{\chi}f)(t_{\chi}g) = t_{\chi}(fg)$, so that $t_{\chi}S$ is a subalgebra of S. Define $\varphi: t_{\chi}S \to S_{\chi}$ by $\varphi(t_{\chi}T(\kappa)) = T_{\chi}(\kappa)$ ($\kappa \in R$). We have

$$
t_{\chi}T(\kappa) = t_{\chi}T(\lambda) \iff (t_{\chi}T(\kappa))(v) = (t_{\chi}T(\lambda))(v) \text{ for all } v \in E^{\otimes r}
$$

$$
\iff T(\kappa)(vt_{\chi}) = T(\lambda)(vt_{\chi}) \text{ for all } v \in E^{\otimes r}
$$

$$
\iff T_{\chi}(\kappa) = T_{\chi}(\lambda),
$$

so φ is well defined and injective. It is immediate that φ is surjective and C-linear, so it is a C-isomorphism.

Finally, for $\kappa, \lambda \in R$, we have, using the first part of the proof,

$$
\varphi((t_XT(\kappa))(t_XT(\lambda)) = \varphi(t_XT(\kappa)T(\lambda)) = \varphi(t_XT(\kappa\lambda))
$$

= $T_X(\kappa\lambda) = T_X(\kappa)T_X(\lambda) = \varphi(t_XT(\kappa))\varphi(t_XT(\lambda)),$

so φ is a **C**-algebra isomorphism.

(ii) First, $\tau_{\chi}(A)$ is a subcoalgebra of A by Theorem [3.1.](#page-7-1)

Next, we show that $\tau_{\chi}(A) \subseteq A_{\chi}$. By Lemma [1.2\(](#page-2-0)ii), it is enough to show that $\tau_{\chi}(c_{i,j})(\kappa) = 0$ for all $\kappa \in \ker T_{\chi}$ and $i, j \in I$. Let $\kappa \in \ker T_{\chi}$ and fix $i, j \in I$.

The group G acts on the set N^R of functions from R to N from the left by $(\sigma f)(\mu) = \sigma f(\mu)$ and on N^* from the right by $(f\sigma)(e) = f(\sigma e)$. (Step 1) $e_{i,j}^* \circ t_\chi T = e_{i,j}^* t_\chi \circ T$. We have, for $\mu \in R$,

$$
(e_{i,j}^* \circ t_{\chi} T)(\mu) = e_{i,j}^* (t_{\chi} T(\mu)) = (e_{i,j}^* t_{\chi})(T(\mu)) = (e_{i,j}^* t_{\chi} \circ T)(\mu).
$$

(Step 2) $\tau_{\chi}(c_{i,j}) = e_{i,j}^* \circ t_{\chi}T$. One checks that, for $\sigma \in G$, $\sigma e_{i,j} = e_{i,j\sigma^{-1}}$ and, in turn, $e_{i,j}^* \sigma = e_{i,j}^* \sigma$. We have

$$
\tau_{\chi}(c_{i,j}) = \frac{\chi(e)}{|G|} \sum_{\sigma \in G} \chi(\sigma^{-1}) c_{i,j\sigma}
$$

\n
$$
= \frac{\chi(e)}{|G|} \sum_{\sigma} \chi(\sigma^{-1}) e_{i,j\sigma}^* \circ T \qquad \text{(Lemma 2.6)}
$$

\n
$$
= e_{i,j}^* t_{\chi} \circ T
$$

\n
$$
= e_{i,j}^* \circ t_{\chi} T \qquad \qquad \text{(Step 1).}
$$

(Step 3) $(t_\chi T)(\kappa) = 0$. For $v \in E^{\otimes r}$ we have

$$
((t_XT)(\kappa))(v) = (t_XT(\kappa))(v) = T(\kappa)(vt_X) = \kappa(vt_X) = 0
$$

since $vt_\chi \in E^\chi$ and $\kappa \in \ker T_\chi$.

Therefore,

$$
\tau_{\chi}(c_{i,j})(\kappa) = e_{i,j}^*((t_{\chi}T)(\kappa))
$$
 (Step 2)
= $e_{i,j}^*(0)$ (Step 3)
= 0,

and we conclude that $\tau_{\chi}(A) \subseteq A_{\chi}$. Finally, we show that $A_{\chi} \subseteq \tau_{\chi}(A)$. For $\kappa \in R$ and $j \in I$ we have

$$
\kappa e_j t_\chi = \kappa e_j t_\chi^2 = \frac{\chi(e)}{|G|} \sum_{\sigma \in G} \chi(\sigma^{-1}) \kappa e_{j\sigma} t_\chi
$$

=
$$
\frac{\chi(e)}{|G|} \sum_{\sigma} \chi(\sigma^{-1}) \sum_{i \in I} c_{i,j\sigma}(\kappa) e_i t_\chi \qquad \text{(Lemma 2.2)}
$$

=
$$
\sum_i \tau_\chi(c_{i,j})(\kappa) e_i t_\chi
$$

and, since some subset of $\{e_i t_\chi | i \in I\}$ is a basis for E^χ , the claim follows. \Box

It follows from the orthogonality relations of characters [\[Is,](#page-11-3) 2.13, 2.18] that the maps τ_{χ} ($\chi \in \text{Irr}(G)$) are pairwise orthogonal idempotents that sum to 1_A :

(i) $\tau_{\chi}\tau_{\psi} = \delta_{\chi,\psi}\tau_{\chi}$ (Kronecker delta),

3.3 THEOREM. $A \cong \bigoplus_{\chi \in \text{Irr}(G)} A_{\chi}.$

Proof. By (ii) of the preceding paragraph and Theorem [3.2\(](#page-8-0)ii),

$$
A = \sum_{\chi \in \operatorname{Irr}(G)} \tau_{\chi}(A) = \sum_{\chi \in \operatorname{Irr}(G)} A_{\chi},
$$

and by (i) of the preceding paragraph the sum is direct. \square

3.4 THEOREM. The map $\psi_{\chi}: S_{\chi} \to A_{\chi}^{*}$ given by $\psi_{\chi}(T_{\chi}(\kappa))(c) = c(\kappa)$ is a C-algebra isomorphism.

Proof. Let $\psi : S \to A^*$ be the isomorphism of Theorem [2.8](#page-6-1) and let $\eta : S \to A^*$ S_{χ} be the epimorphism induced by restriction: $\eta(T(\kappa)) = T(\kappa)|_{E^{\chi}}$. Then $\psi(\ker \eta) = A^0_\chi$ (= annihilator of A_χ). Indeed, for $\kappa \in R$, we have

$$
\psi(T(\kappa)) \in A_{\chi}^{0} \iff \psi(T(\kappa))(c) = 0 \quad \forall c \in A_{\chi}
$$

\n
$$
\iff c(\kappa) = 0 \quad \forall c \in A_{\chi}
$$

\n
$$
\iff \kappa \in \ker T_{\chi} \quad \text{(Lemma 1.2(i))}
$$

\n
$$
\iff T(\kappa)|_{E^{\chi}} = T_{\chi}(\kappa) = 0
$$

\n
$$
\iff T(\kappa) \in \ker \eta.
$$

Therefore, we have C-algebra isomorphisms

$$
S_{\chi} \cong S/\ker \eta \cong A^*/A_{\chi}^0 \cong A_{\chi}^*
$$

(the last C-isomorphism is an algebra isomorphism by Theorem [3.2\(](#page-8-0)ii) and [\[Ab,](#page-11-2) 2.3.1(ii)]). Calling the composition ψ_{χ} and the composition of just the last two φ , we have

$$
\psi_{\chi}(T_{\chi}(\kappa))(c) = \varphi(\overline{T(\kappa)})(c) = \overline{\psi(T(\kappa))}(c) = \psi(T(\kappa))(c) = c(\kappa).
$$

3.5 THEOREM. $S \cong \bigoplus_{\chi \in \text{Irr}(G)} S_{\chi}.$

Proof. This follows from Theorems [2.8,](#page-6-1) [3.3,](#page-10-1) and [3.4.](#page-10-0)

For $i \in I$, let G_i denote the stabilizer of i in G.

3.6 THEOREM. We have

$$
\dim_{\mathbf{C}} A_{\chi} = \frac{\chi(e)}{|G|} \sum_{(i,j) \in B} \sum_{\sigma \in G_j G_i} \chi(\sigma^{-1}),
$$

where B is a set of representatives for the orbits of $I \times I$ under the diagonal action of G.

Proof. By Theorem [3.2\(](#page-8-0)ii), we have $A_{\chi} = \tau_{\chi}(A)$. Since $\tau_{\chi}^2 = \tau_{\chi}$, an eigenvalue of τ_{χ} is either 1 or 0, so the rank of τ_{χ} equals its trace. Therefore, it is enough to show that the trace of τ_{χ} is given by the formula on the right.

$$
^{11}
$$

Fix $i, j \in I$ and let D be a set of representatives of the (G_i, G_i) double cosets in G chosen with $e \in D$. For $\delta \in D$, let R_{δ} be a set of representatives of the right cosets of $G_i \cap \delta^{-1} G_j \delta$ in G_i so that

$$
G_j \delta G_i = \dot{\bigcup}_{\rho \in R_{\delta}} G_j \delta \rho
$$

(disjoint union) $\lbrack \text{Su}, \text{proof of } 3.8(iv) \rbrack$. We have

$$
\tau_{\chi}(c_{i,j}) = \frac{\chi(e)}{|G|} \sum_{\sigma \in G} \chi(\sigma^{-1}) c_{i,j\sigma}
$$

$$
= \frac{\chi(e)}{|G|} \sum_{\delta \in D} \sum_{\substack{\mu \in G_j \\ \rho \in R_{\delta}}} \chi((\mu \delta \rho)^{-1}) c_{i,j(\mu \delta \rho)}.
$$

In the last sum, we have

$$
c_{i,j(\mu\delta\rho)} = c_{i,j(\delta\rho)} = c_{i\rho^{-1},j\delta} = c_{i,j\delta}
$$

so

$$
\tau_{\chi}(c_{i,j}) = \frac{\chi(e)}{|G|} \sum_{\delta \in D} \sum_{\substack{\mu \in G_j \\ \rho \in R_{\delta}}} \chi\left((\mu \delta \rho)^{-1}\right) c_{i,j\delta}.
$$

Let $\delta, \epsilon \in D$ and assume that $(i, j\delta) \sim (i, j\epsilon)$ so that $(i, j\delta) = (i\pi, j\epsilon\pi)$ for some $\pi \in G$. Then $\pi \in G_i$ and $\epsilon \pi \delta^{-1} \in G_j$, whence $G_j \epsilon G_i = G_j \epsilon \pi G_i =$ $G_j \delta G_i$, implying that $\epsilon = \delta$. We conclude that the $c_{i,j\delta}$ appearing in the linear combination above are distinct and that $c_{i,j\delta} = c_{i,j}$ if and only if $\delta = e$. Therefore,

$$
\operatorname{tr} \tau_{\chi} = \sum_{(i,j)\in B} \left(\frac{\chi(e)}{|G|} \sum_{\substack{\mu \in G_j \\ \rho \in R_e}} \chi\big((\mu e \rho)^{-1}\big) \right)
$$

$$
= \frac{\chi(e)}{|G|} \sum_{(i,j)\in B} \sum_{\sigma \in G_j G_i} \chi\left(\sigma^{-1}\right)
$$
as claimed.

REFERENCES

- [Ab] E. Abe, Hopf algebras, Cambridge Univ. Press, Cambridge, 1976.
- [Is] I. M. Isaacs, Character theory of finite groups, Dover, New York, 1976.
- [Ma] S. Martin, Schur algebras and representation theory, Cambridge Univ. Press, Cambridge, 1993.
- [Su] M. Suzuki, Group Theory I, Springer-Verlag, Berlin, 1982.
- [Tu] D. P. Turner, "Coefficient space properties and a Schur algebra generalization," Ph.D. dissertation, Auburn University, Auburn, Alabama, 2005.

Randall R. Holmes, Department of Mathematics and Statistics, Auburn University, Auburn AL, 36849, holmerr@auburn.edu

David P. Turner, Department of Mathematics, Faulkner University, Montgomery AL, 36109, dturner@faulkner.edu